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Abstract. Semiconductor alloy with spatially non-uniform change of composition close to the
averaged value, corresponding to the transition between gapless and narrow-gap states, is studied.
The density of states is calculated within the two-band model of band structure with random change
of the position of the conduction band bottom and with a uniform valence band top. The appearance
of an inhomogeneity-induced gap in the energy dependence of the density of states is discussed
for the cases of short-range and long-range non-uniformities of composition. The peculiarities of
the kinetic effects due to modification of the gapless state in such non-uniform semiconductors are
discussed.

1. Introduction

The peculiarities of the kinetic and optical properties of gapless semiconductor alloys were
studied in detail [1, 2] within the ‘virtual’-crystal model. In the framework of this model the
k · p Hamiltonian parameters depend on alloy composition, but the model does not take into
consideration the non-uniformities of composition for the range of distances of the order of
the lattice constant, a. To the best of our knowledge, such non-uniformities have only been
discussed for finite-gap alloys [3, 4]. The band structure of several gapless semiconductors
was calculated in [5] throughout the whole concentration range from semimetal to finite gap.
However, there was no special emphasis placed on the region where the gap opens.

The transition between the gapless and narrow-gap states of the energy spectrum occurs
with the change of alloy composition, i.e. the change of xr for alloys such as AxA′

1−xB
(e.g. PbxSn1−xTe or HgxCd1−xTe) in the vicinity of x = xc. Due to the smooth (i.e. slowly
changing at distances of the order of a) non-uniformities of composition in these alloys, the
critical value of the composition, xc, is realized at the transition point only as an average,
xc = 〈xr〉 (〈· · ·〉 means the average over the spatial non-uniformities of the composition).
Therefore, consideration of this non-uniformity indicates the gapless semiconductor to be of
type-I structure (likeα-Sn, HgTe or HgSe, and alloys based on lead chalcogenide), with random
domains with positive and negative gaps, separated by inversion heterojunctions as shown in
figure 1. (In the opposite case of gapless semiconductors of type II, like HgCdTe alloys, a
structure with gapless and narrow-gap domains occurs, because heavy-hole bands exist then,
and their positions change only slightly with the alloy composition.)

The averaging over these random non-uniformities in type-I gapless semiconductors
results in the appearance of an effective gap in the energy dependence of the density of states,
ρ(E). Such effective gaps are determined both by average gap variance 	εg = (dεg/dx)	x
(here 	x is the average variance of the composition from xc and the derivative (dεg/dx) is
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Figure 1. The spatial change of the ±-band extrema E± (lc: correlation length; 	εg : gap-width
variance).

taken at x � xc) and correlation length lc. This modification of the ideal density of states
ρ0(E) = E2/π2(h̄s)3 which is obtained for the linear spectrum ±s|p| of electrons (+) and
holes (−) (s is the interband velocity and p is the momentum) leads to the change of kinetic
phenomena in non-uniform gapless semiconductors. These changes of the density of states and
interband absorption can be obtained from the phenomenological averaging of the expressions
for the narrow-gap material over the long-range inhomogeneities with gap εg near 〈εg〉 = 0
(see the appendix).

In this paper we present microscopic calculations of ρ(E) within the two-band model of
band structure with isotropic bands. The main assumption of the analytic examination made
here is the use of the band diagram of the alloy with the plane valence band (see the scheme
for the random spatial change of the conduction and valence band extrema in figure 1). On the
assumption of a fixed valence band top, the matrix (which is 4 × 4 due to the spin) Green’s
function is given through the path integral for a particle with a quadratic dispersion law and
the effective mass m∗ = 	εg/2s2 in the random potential E(xr − xc)/	x. The calculation
of ρ(E) is reduced thus to the averaging of this integral, performed here for the cases of
short-range and long-range non-uniformities of the composition.

Below, in section 2, the one-particle matrix Green’s function is calculated and the density
of states is expressed through this function. Further on, the energy dependences of the density
of states for the cases of long-range (section 3) and short-range (section 4) non-uniformities of
the composition are discussed. In the concluding section we present the numerical estimations
and discuss the approximations being used.

2. Green’s functions

Neglecting the contribution of the remotely spaced bands, we use a Hamiltonian that is linear
in the momentum operator, p̂. Therefore the matrix Green’s function Ĝε(r, r

′) is introduced
by the equation[

v̂p̂ + ε̂r − ε
]
Ĝε(r, r

′) = δ(r − r′). (1)

Here the interband velocity matrix, v̂, is assumed to be independent of the alloy composition
while the spatial dependences of the conduction and valence band extrema are determined by
the diagonal matrix ε̂r. The two-band model of the gapless semiconductor of type I with fixed
valence band extrema is described by

v̂ = sσ̂ρ̂1 ε̂r = 	εg δ(r)(1 + ρ̂3)/2. (2)
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The velocity s in equation (2) determines the band spectrum of the uniform gapless semi-
conductor ±s|p|, σ̂ is the Pauli matrix, and ρ̂1,2,3 are the 2 × 2 matrices introduced in [6].
These matrices operate on the band states. In the expression for ε̂r we use the linear dependence
between the average variance of the composition	x and the average variance of the gap width
	εg; δ(r) = (xr − xc)/	x is a random function with 〈δ(r)2〉 = 1. We consider the case of
Gaussian correlation of the non-uniformities:

〈δ(r)δ(r′)〉 ≡ W(|r − r′|) = exp(−|r − r′|2/l2c )
for the numerical estimations below.

It is convenient to rewrite equation (1) using the band quantum numbers j = c, v (for
conduction and valence) and the system of four equations for the spin-dependent matrices.
Ĝ
j,j ′
ε (r, r′) now takes the form[

	εg δ(r)− ε s(σ̂p̂)

s(σ̂p̂) −ε
]
Ĝjj ′
ε (r, r′) = δ(r − r′)δjj ′ . (3)

For the approximation of the fixed valence band we can exclude the matrices Ĝvc
ε , Ĝvv

ε from
the lower pair of equations in this system through the equalities

Ĝvc
ε (r, r

′) = s

ε
(σ̂p̂)Ĝcc

ε (r, r
′)

Ĝvv
ε (r, r

′) = s

ε
(σ̂p̂)Ĝcv

ε (r, r
′)− δ(r − r′)

ε
.

(4)

Therefore, independent equations of second order are obtained for the retarded Green’s
functions Ĝcc

ε , and Ĝcv
ε :[

p̂2

2m∗ + Eδ(r)− E2

	εg
− iλ(sgnE)

]
Ĝcc
E (r, r

′) = E

	εg
δ(r − r′)

[
p̂2

2m∗ + Eδ(r)− E2

	εg
− iλ(sgnE)

]
Ĝcv
E (r, r

′) = s(σ̂p̂)

	εg
δ(r − r′)

(5)

where ε = E − iλ and λ → +0.
The solutions of these equations can be written in terms of path integrals in analogy with

[7] (below we use h̄ = 1 in the intermediate expressions, for reasons of convenience):

Gt(r, r
′) = i

∫ xt=r

x0=r′
D{xτ } exp

{
−i

∫ t

0
dτ

[
m∗

2
ẋ2
τ − Eδ(xτ )

]}
. (6)

The components of Ĝjj ′
E for positive or negative energiesE are expressed through the function

KE(r, r
′) =




∫ 0

−∞
dt exp(λt − iE2t/	εg)Gt(r, r

′) E > 0∫ ∞

0
dt exp(−λt − iE2t/	εg)Gt(r, r

′) E < 0 .

(7)

Here the change of the limits of the integration over time at E = 0 is determined by the
contribution of i(sgnE)λ in equation (5). The results take the form

Ĝcc
E (r, r

′) = −i
|E|
	εg

KE(r, r
′)

Ĝcv
E (r, r

′) = −i(sgnE)
(σ̂p̂′)
2m∗s

KE(r, r
′)

(8)
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and using equations (4) we obtain

Ĝvc
E (r, r

′) = −i(sgnE)
(σ̂p̂)

2m∗s
KE(r, r

′)

Ĝvv
E (r, r

′) = −i
(σ̂p̂)(σ̂p̂′)

2m∗|E| KE(r, r
′)− (sgnE)

δ(r − r′)
|E| .

(9)

Therefore, equations (6)–(9) give the expression for the matrix Green’s function with the
approximation of a fixed valence band. This enables us to write ρ(E) in terms of the average
of these Green’s functions. Such an average would differ from the ordinary equations of [8] in
considering additional sums over the discrete variables only. The density of states, averaged
over the non-uniformity of the composition, is given by the expression

ρ(E) = Im

πV

∫
dr tr〈ĜE(r, r

′)〉 (10)

where ‘tr’ means the trace over the matrix variables and V is the normalizing volume.

3. The long-range case

In order to calculate the density of states, we substitute the expressions for Gjj

E (j = c, v),
determined from equations (6)–(9), into equation (10). After summation over the spin and
taking the average over the composition non-uniformity, we get

ρ(E) = |E|
	εg

− 	R

2m∗|E|
2

π
Re




∫ 0

−∞
dt eλt−iE2t/	εggt (R)|R→0 E > 0∫ ∞

0
dt e−λt−iE2t/	εggt (R)|R→0 E < 0

(11)

and the averaged path integral gt (R) here depends on R = r − r′. Using the well-known
result for the average of the random potential in the exponent (see [9] and the appendix below),
while calculating the contributions of the random potential energy to the action, we obtain

gt (R) =
∫ xt=R

x0=0
D{xτ } exp

[
−i

∫ t

0
dτ

m∗

2
ẋ2
τ − E2

2

∫ t

0
dτ

∫ t

0
dτ ′ W(|xτ − xτ ′ |)

]
. (12)

For the case of long-range non-uniformities, the quasi-classical approximation is valid. There-
fore it is convenient to separate the linear path Rτ/t and to rewrite equation (12) in terms of
the contour path integral:

gt (R) = exp

(
− im∗R2

2t

) ∮
D{yτ } exp

{
−i

∫ t

0
dτ

m

2
ẏ2
τ

− E2

2

∫ t

0
dτ

∫ t

0
dτ ′ W

[∣∣∣∣yτ − yτ ′ + R
(τ − τ ′)

t

∣∣∣∣
]}
. (13)

The main contribution to the path integral of equation (13) is made by the classical path;
the variation of the action over this trajectory is zero. This trajectory is determined by the
Euler–Lagrange integral–differential equation:

m∗ÿτ − i
E2

l2c

∫ t

0
dτ ′

(
yτ − yτ ′ + R

τ − τ ′

t

)
W

(∣∣∣∣yτ − yτ ′ + R
τ − τ ′

t

∣∣∣∣
)

= 0. (14)

Further on, we shall use the estimate for the greatest (corresponding to the time t = τ/2)
deviation of the classical path from the linear path, chosen above. This estimate can be
obtained from equation (14):

|ymax(t)/ lc| � E2t3/8m∗l2c . (15)
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Later, the contributions of such the times t will be essential in the calculation of ρ(E), to
make equation (15) small, so that the deviations of the classical path from the linear one can be
neglected. In this case the paths yτ determine the contribution of the quantum corrections. This
contribution can be estimated from the consideration of the second variation of the functional
in equation (14). It is small in the parameter of equation (15). Such an inequality permits
us to consider the linear paths only, while calculating ρ(E). After the calculation of the path
integral in equation (13) we get

gt (R) �
(

im∗

2πt

)3/2

exp

[
− im∗R2

2t
− E2

2

∫ t

0
dτ

∫ t

0
dτ ′ W

(∣∣∣∣Rτ − τ ′

t

∣∣∣∣
)]

. (16)

Further on, by substituting gt (R) into equation (11), and with the use of the equality
gt (R) = g−t (R)∗, we will calculate 	R at R → 0 for the second term of equation (11).
The contribution of small R in the factor exp(−mR2/2t) must be taken into account in
the vicinity of the anomaly at t = 0. Finally, the dimensionless density of states ρ(E)/ρ0

(ρ0 ≡ 	ε2
g/[π2(h̄s)3] is the density of states of the ideal gapless semiconductor at energy	εg)

is determined, by analogy with the long-range-limit case for the finite-gap semiconductors [10],
in terms of parabolic cylinder functions. The final expression is a function of the dimensionless
variable ε = |E|/	εg only:

ρ(E)/ρ0 =
{
ε2 − 1/16 + o(ε−2) ε � 1√
π/2ε3 + o(ε5) ε � 1.

(17)

These asymptotic expansions for the large and small arguments correspond to the phenom-
enological expressions obtained in the appendix. The expressions for ρ(E)/ρ0 must agree
for the region of finite ε, and we see that the transition between them occurs at rather small
dimensionless energies of the order of 0.2–0.3. The results of the numerical calculation of
equation (11), (16) (solid line), as well as the phenomenological dependence of equation (A.5)
(dashed line) and the ε2-function for the ideal gapless semiconductor (dots), are given in
figure 2. Comparison of the solid and dotted lines in figure 2 for the region of small ε shows
that we can treat the region |E|/	εg � 0.15 as the effective gap, caused by the inhomogeneity
of the composition. One can see also that the phenomenological approximation, given in the

0.25 0.50 0.75
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0.2

0.3

0.4
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ρ(
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|E|/∆ε
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Figure 2. The energy dependence of the dimensionless density of states, determined by equ-
ation (11) and equation (16) (solid line), and by (A.5) (dashed line), and the ε2-function for the
ideal gapless semiconductor (dots).
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appendix, leads to results close to those obtained within the microscopic Green’s function
investigation for the long-range case.

We mention that the expressions for ρ(E)/ρ0 were obtained here for the case where the
inequality

4m∗l2c 	εg � 1 (18)

is valid. This inequality means that the deviations from the linear path, equation (15), at ε � 1
are small. The dependence ρ(E) is an even one because it is determined by contributions to
the density of states of the random domains with direct and inverse band structure, which are
equal in volume.

4. The short-range case

In the case where the condition of smallness of equation (15) is no longer valid and long
times are essential for the calculation of the path integral (this situation is realized for small
lc and non-zero values of |E|), one should use the self-consistent approximation [11] for the
calculation of gt (R). Within this approximation we obtain the next equation for gt (R):(

i
∂

∂t
+

∇2
R

2m∗

)
gt (R) + iE2

∫ t

0
dt ′

∫
dR′ W(|R − R′|)G(3)(R, t |R′, t ′) = δ(R)δ(t). (19)

Here the three-point Green’s function G(3)(R, t |R′, t ′) is determined by the factor gt−t ′(R −
R′)gt ′(R′). By carrying out the Fourier transformation over time and space variables, we get
the Green’s function from equation (19):

gE(k) =
[

k2

2m
− E2

	εg
+ ME(k)

]−1

. (20)

Here the mass operator ME(k) is determined by the integral equation

ME(k) = E2
∫

dk′

(2π)3
W(|k + k′|)gE(k′) (21)

(W(|k|) is the Fourier shape function of the Gaussian correlator).
The density of states is determined through equation (20) by the relation

ρ(E)/ρ0 = 2

π
Re

∫
dk

(2π)3

(
ε +

k2

2m∗ 	εg ε

)
gE(k). (22)

The self-consistent approximation corresponds to the Dyson equation with the mass operator
written in the Born approximation. In this approach, we use the free Green’s function for
the calculation of the right-hand side of equation (21). The mass operator that determines
equation (20) is given by the equation

ME(k) � 	εg
bε2

16

(
1 + i

ε

2

√
b

π

)
. (23)

This equation is obtained for the conditions where the inequality inverse to equation (18)
holds. Here b ≡ m∗l2c 	εg � 1. Substitution of these expressions into equation (22) gives
the dependence of ρ(E)/ρ0, presented in figure 3. For b → 0 we get the curve for ε2,
corresponding to the ideal gapless semiconductor. However, at b > 0 this dependence differs
considerably from the ε2-curve. It should be noted that the inhomogeneity-induced gap for
b = 0.2–0.4 is of the same order of magnitude as for the long-range case.
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Figure 3. The energy dependence ρ(E)/ρ0 for b = 0.05 (1), b = 0.1 (2), and b = 0.2 (3), and
the function ε2 for the ideal gapless semiconductor (dotted line).

5. Conclusions

The energy dependences of the density of states, presented in figures 2 and 3, are changed
significantly in comparison with those for the case of the ideal homogeneous alloy with
ρ(ε) ∼ ε2. The form of these modifications in the region |E|/	εg � 0.15 can be treated as the
effective gap, caused by the inhomogeneity of the composition. We have also demonstrated
that these modifications themselves differ, showing a transition between the cases for short-
range and long-range inhomogeneities. The energies of the gap that appears due to the non-
uniformity of the alloy are the same in the transition region between these two limit cases
(i.e. at 	εg � (4m∗l2c )

−1). We mention also the other approximations used for the calculation
of the Green’s functions, equation (16) and equation (20), averaged over the non-uniformity of
the composition. Consideration of the case of a plane valence band permits us both to reduce
the matrix equation for the Green’s function, equation (1), to a scalar one, and to neglect the
additional states localized on the heterojunctions with zero gap (because the radius of these
states tends to infinity for the case of a plane valence band [12]). The use of the ‘virtual-
crystal’ model for the description of the smooth non-uniformities of the crystal does not take
into consideration the broadening of the electron states due to scattering on the atomic-scale
inhomogeneities. This broadening (which is responsible for the ‘alloy’ scattering of carriers
[13]) is small for de Broglie length greater than the lattice constant. Therefore it can be
neglected for the values of the crystal non-uniformity given below.

There have been no careful experimental studies of the appearance of the gap in gapless
semiconductors corresponding to control of the inhomogeneity parameters 	εg and lc. The
typical values dεg/dx = 0.5 eV and	x = 10−3 lead to	εg � 2.5 meV; i.e. the characteristic
scale of the gap in the density-of-states curve is of meV order. The transition between the long-
range and short-range cases corresponds to a value of lc of the order of sh̄/

√
2	εg � 0.12µm

(we use s � 6.7×107 cm s−1). This gap can be observed on the edge of the ‘fundamental’ sub-
millimetre absorption (see the appendix). This gives a method for estimating the correlation
length.

The energy dependence ρ(E) can be determined also from the temperature dependence
of the electron–hole pair concentration in the intrinsic non-uniform gapless semiconductor.
These concentrations are determined through ordinary statistical formulae [14]. They can be
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measured from studies of the Hall effect or other kinetic effects. Besides the modification of the
high-frequency and static effects or the non-uniform gapless semiconductor, the character of the
fluctuations can also change (1/f noise can arise for the case of long-range inhomogeneities).

Appendix

In the case of extremely long-range inhomogeneities we can obtain the ρ(E) dependence by
averaging the density of states for the narrow-gap semiconductor over εg(r) (the average of
εg(r) in this case is zero). This approach also enables us to calculate the interband absorption
coefficient, averaged over the inhomogeneities. The density of states, ρ(E), and the interband
absorption coefficient, α(ω), for the homogeneous semiconductor with the gap width εg are
given by well-known expressions:

ρ(E) = |E|
π2(h̄s)3

√
E2 − ε2

g (A.1)

α(ω) = e2

3h̄2cnωs

√
(h̄ω)2 − ε2

g

[
1 +

1

2

(
εg

h̄ω

)2
]
. (A.2)

Here c is the light velocity, nω is the refractive index. In order to calculate the density of
states 〈ρ(E)〉, as well as the absorption coefficient 〈α(ω)〉 for the gapless alloy with spatial
inhomogeneities of composition, we substitute for εg in equation (A.1) and equation (A.2)
with 	εg δ(r)/2 (see equation (2)) and take the average over the inhomogeneities of the alloy
δ(r). Using the dimensionless energy ε and the frequency* = h̄ω/	εg , we rewrite the initial
expressions in the forms

〈ρ(E)〉/ρ0 = ε2

〈√
1 −

(
δ(r)

2ε

)2
〉

(A.3)

〈α(ω)〉/α = *

〈√
1 − (δ(r)/2*)2

[
1 +

1

2

(
δr

2*

)2
]〉

(A.4)

where ρ0 is introduced as in equation (16), and α = e2 	εg/(3h̄2cnωs) determines the
absorption coefficient for the ideal gapless semiconductor at h̄ω = 	εg .

After Fourier transforming the functions
√

1 − x2 and
√

1 − x2(1 + x2/2), and using the
expression 〈exp(iKδr)〉 = exp(−K2/2) for the average of the random exponent (see e.g. [14]),
we can rewrite (A.3) and (A.4) as

〈ρ(E)〉
ρ0

= ε3

√
2

π

∫ 1

−1
dx e−2(εx)2

√
1 − x2 (A.5)

〈α(ω)〉
α

= *2

√
2

π

∫ 1

−1
dx e−2(*x)2

√
1 − x2

[
1 +

x2

2

]
. (A.6)

The numerical integration of these expressions leads to the results presented in figure 2
(dashed line) and figure A1. The asymptotes for 〈ρ(E)〉/ρ0 for the cases where ε � 1 and
ε � 1 are given by equation (17). The corresponding asymptotes for the absorption coefficient
are

〈α(ω)〉
α

=




9

8

√
π

2
*2 * � 1

* * � 1.

(A.7)
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Figure A1. The absorption coefficient 〈α(ω)〉/α calculated through equation (A.6) (solid line) and
the absorption coefficient for the ideal gapless semiconductor (dashed line).

As one can see, the high-frequency limit corresponds to the absorption coefficient for the ideal
gapless semiconductor. The scale of the range of frequencies where the deviation from the
linear spectrum is substantial can be of the order of several meV (see section 5 and figure 1).
Therefore these deviations can be studied experimentally using far-IR measurements.
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